US009218197B2

a2 United States Patent

Balani et al.

US 9,218,197 B2
Dec. 22, 2015

(10) Patent No.:
(45) Date of Patent:

(54) VIRTUAL MACHINE IMAGE MIGRATION (56) References Cited

(71) Applicant: International Business Machines U.S. PATENT DOCUMENTS
Corporation, Armonk, NY (US) 7,136,974 B2* 11/2006 Burton etal. .........c..... 711/162
8,108,456 B2 1/2012 Chen et al.
(72) Inventors: Rahul Balani, New Delhi (IN); 2012/0054731 Al 3/2012 Aravamudan et al.
Dipyman B New el 0 0300700 31 3200 kvt
Kamal Kumar Bhattacharya, 2012/0257820 Al* 10/2012 sifgii‘i el 382/159
Bangalore (IN); Deepak Kumar
Jeswani, New Delhi (IN); Aritra Sen, FOREIGN PATENT DOCUMENTS
New Delhi (IN); Akshat Verma,
Bangalore (IN) WO W02012021324 2/2012
(73) Assignee: International Business Machines OTHER PUBLICATIONS
Corporation, Armonk, NY (US) Venugopal, Suresh et al., “Effective Migration of Enterprise Appli-
cations in Multicore Cloud,” Proceedings of the 2011 Fourth IEEE
(*) Notice: Subject to any disclaimer, the term of this International Conference on Utility and Cloud Computing, 2011,
patent is extended or adjusted under 35 Abstract Only, 1 page, IEEE Computer Society, Washington, DC,
U.S.C. 154(b) by 334 days. USA.
(Continued)
(21) Appl. No.: 13/690,297
. Primary Examiner — Camquy Truong
(22) Filed: Nov. 30, 2012 (74) Attorney, Agent, or Firm — Ference & Associates LL.C
(65) Prior Publication Data (57) ABSTRACT
US 2014/0157260 Al Jun. 5, 2014 Methods and systems for image migration. There are
received, at an image reader, files of at least one image of at
(1) Int. Cl. least one virtual machine from a first environment. Points of
Go6l’ 9/46 (2006.01) variability are identified within the files, with respect to
GOG6F 9/445 (2006.01) preparation for functioning in a second environment. Each
GO6l 9/455 (2006.01) point of variability is associated with corresponding meta-
(52) US.CL data, and each point of variability is stored with its corre-
CPC .o GOG6F 9/45558 (2013.01); GOGF 8/61 sponding metadata. The at least one image is reconfigured to
(2013.01); GO6F 9/45533 (2013.01); GOGF function in the second environment, such reconfiguring com-
2009/4557 (2013.01) prising adjusting the points of variability via using the meta-
(58) Field of Classification Search data. The reconfigured image is deployed to the second envi-

CPC .... GO6F 9/45533; GOGF 8/61; GOGF 9/45558
USPC ittt 717178
See application file for complete search history.

ronment.

18 Claims, 4 Drawing Sheets

325
.
™.
ST DEPLOY
N \ PECONFIGURED
T, [ SSS—— oy b

( START B | FINISH ; HMAGE TG I

\ j N Y, ENVIRONMENT

e w4

. 315 *
/
4 323
RECEIVE FILES OF AT \\ RECONFIGURE THE AT
LEAST ONE IMAGE OF LEAST ORE TMAGE TO
AT LEAST GNE VIRTUAL FUNTTION i 240
MACHINE FROM 157 ENVIRONMENT
ENVIRONMENT
337 ;318 321, i
f / .
9
. v o ASSOCIATE BACH STORE EACH POINT
IDENTIZY POINTS OF POINT OF VARISBILITY » OF VARIABILITY
VARIABILITY WITHIN WITH CORPESPONDING WITH ITS METADATA
FILES METADATA




US 9,218,197 B2
Page 2

(56) References Cited
OTHER PUBLICATIONS

Ward, C. et al., “Workload Migration into Clouds Challenges, Expe-
riences, Opportunities,” Proceedings of the 2010 IEEE 3rd Interna-
tional Conference on Cloud Computing, 2010, Abstract Only, 1 page,
IEEE Computer Society, Washington, DC, USA.

Paulino, Herve et al., “SmART: An Application Reconfiguration
Framework,” Complex Systems Design & Management, Proceed-
ings of the First International Conference on Complex System
Design & Management CSDM 2010, Abstract, 2010, 3 pages,
Springer Berlin Heidelberg, Germany.

* cited by examiner



US 9,218,197 B2

Sheet 1 of 4

Dec. 22, 2015

U.S. Patent

FAtE
/

m:ww. T K

¥ RAO A3

WiwOwLaw %Aﬂ 43U

XBERBENBLIHCY

mmu.mf:fti./f

HIXIZON AL

flad CAFILNICH

POT e f.

WM A0

SH Y ACOIINYD

£03 T

HASEYID

LI RNOYIANT £30WYE

L L T N e E Y

10T
/

£

{BIOMUREBEY TOVRIFIZE NI

20T

-

WY

FWOLS 30V
ZIES SF0Y
HOMMLIN

TANBENBUNEXD EXIEND EXS



US 9,218,197 B2

Sheet 2 of 4

Dec. 22, 2015

U.S. Patent

{RISUCHALID 320487 03}
3B WA
PRPON N
& ..
3

£1Z

e e e e i

i

spAodag GOF

IS

EEPpS P P P PP 3

Fleutecistoifbics®
shouiy

¢ "OId

/

Py

/

Z0

£

&0Z

/
£

el JBDRUB Y WIDISAT i

S\x\s\s

JBUMN AT

k

ISR B

Ayin
Ny ahewy

(¥4

P T

L {oiqel ADd) O57




US 9,218,197 B2

Sheet 3 of 4

Dec. 22, 2015

U.S. Patent

YEAYOVIAW 51T HIIM
ALTHBYINYA 40
ANIGd HOVE Zd0LS

&

€ 'OId

YiyAvidid
DNIGNCLSIYROD HIIM

¥

ANIHNOWIANG
ord NI NOQLLONO
{0 F0YRWT END 1Sy
LY FHL 2UNDIENCO3Y

¥

£ZE

ANBIRNOUIANG
ol L 30V
GEANSTEAN0TTY
ACTdEA

ALTGYIMYA 40 LNIGd
HOVE IEVIOSHY

&

/

&61¢ 7

£18

S3A
NIMLIM ALTHEYIYVYA
40 SLNIO AJLLNZQE

\\

ANFWNOYIANT
15T WOUL INIHIVH
IYOLMIA BNO L5V LY
40 FOVRWI 3NO L5vET
4¥ 40 SEd 3AIZ0IY

\\ 3




US 9,218,197 B2

Sheet 4 of 4

Dec. 22, 2015

U.S. Patent

v 'OlId

SAFAZA
TYNHR LK

£

HIALIVOY WAOMLIN {S}20v4¥31M

o  AYWSIO
a ¥

;02 N
2L

[Reiatisiediaiothaioiodi oot i e tindiiediaindieiedhaieladialadbabathaloindbalodhabatoslobediabadng e,

T .Y PR b 1

¢
B
i
5
t
¢
:
i
7
L
§
t
]
H
i
s
t
i
:
i
§
2
.
foo § s
?
¥ mm mm ¥ :
3
1
¢
t
:
H
L
§
t
¢
H]
i
5
:
¢
¢
i
5
L
§
r
:
H
i
:

s

tig / LIND
J—— N . ST SNIZSI00Y8d

A1

A

&
3
-
FE
-
1
A—

o WYy
%m Mm%.% “am

{
sﬁ-

B YIAEISEISIS HRIAGNDT TNz




US 9,218,197 B2

1
VIRTUAL MACHINE IMAGE MIGRATION

BACKGROUND

Cloud computing has revolutionized IT service delivery by
automating various system management tasks. However,
software configuration and integration has remained chal-
lenging in the context of migrating applications to cloud
computing environments. Because of the diversity of appli-
cation software and the use of proprietary files and mecha-
nisms needed to obtain information about various operating
environments, configuration and integration from an existing
source environment (such as a physical server or virtual
machine) into a target cloud computing environment has
remained complex and expensive.

BRIEF SUMMARY

In summary, one aspect of the invention provides a method
of virtual machine image migration, the method comprising
the steps of: utilizing a processor to execute computer code
configured to perform the steps of: receiving, at an image
reader, files of at least one image of at least one virtual
machine from a first environment; identifying points of vari-
ability within the files, with respect to preparation for func-
tioning in a second environment; associating each point of
variability with corresponding metadata; storing each point
of variability with its corresponding metadata; reconfiguring
the at least one image to function in the second environment,
the reconfiguring comprising adjusting the points of variabil-
ity via using the metadata; and deploying the reconfigured
image to the second environment.

Another aspect of the invention provides an apparatus for
virtual machine image migration, the apparatus comprising:
at least one processor; and a computer readable storage
medium having computer readable program code embodied
therewith and executable by the at least one processor, the
computer readable program code comprising: computer read-
able program code configured to receive files of at least one
image of at least one virtual machine from a first environ-
ment; computer readable program code configured to identify
points of variability within the files, with respect to prepara-
tion for functioning in a second environment; computer read-
able program code configured to associate each point of vari-
ability with corresponding metadata; computer readable
program code configured to store each point of variability
with its corresponding metadata; computer readable program
code configured to reconfigure the at least one image to func-
tion in a second environment, the reconfiguring including
adjusting the points of variability via using the metadata; and
computer readable program code configured to deploy the
reconfigured image to the second environment.

An additional aspect of the invention provides a computer
program product for virtual machine image migration, the
computer program product comprising: a computer readable
storage medium having computer readable program code
embodied therewith, the computer readable program code
comprising: computer readable program code configured to
receive files of at least one image of at least one virtual
machine from a first environment; computer readable pro-
gram code configured to identify points of variability within
the files, with respect to preparation for functioning in a
second environment; computer readable program code con-
figured to associate each point of variability with correspond-
ing metadata; computer readable program code configured to
store each point of variability with its corresponding meta-
data; computer readable program code configured to recon-

10

15

20

25

30

35

40

45

50

55

60

65

2

figure the at least one image to function in a second environ-
ment, the reconfiguring including adjusting the points of
variability via using the metadata; and computer readable
program code configured to deploy the reconfigured image to
the second environment.

A further aspect of the invention provides a method com-
prising: receiving files of at least one image of at least one
virtual machine from a first environment; identifying points
of variability within the files, with respect to preparation for
functioning in a second environment; associating each point
of variability with corresponding metadata; storing each
point of variability with its corresponding metadata; recon-
figuring the at least one image to function in the second
environment, the reconfiguring comprising adjusting the
points of variability via using the metadata; and subsequently
employing the metadata again in migrating the at least one
image to a third environment.

For a better understanding of exemplary embodiments of
the invention, together with other and further features and
advantages thereof, reference is made to the following
description, taken in conjunction with the accompanying
drawings, and the scope of the claimed embodiments of the
invention will be pointed out in the appended claims.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a flow chart of an example embodiment.

FIG. 2 is a block diagram of an example embodiment.

FIG. 3 sets forth a process more generally for image migra-
tion.

FIG. 4 illustrates a computer system.

DETAILED DESCRIPTION

It will be readily understood that the components of the
embodiments of the invention, as generally described and
illustrated in the figures herein, may be arranged and designed
in a wide variety of different configurations in addition to the
described exemplary embodiments. Thus, the following more
detailed description of the embodiments of the invention, as
represented in the figures, is not intended to limit the scope of
the embodiments of the invention, as claimed, but is merely
representative of exemplary embodiments of the invention.

Reference throughout this specification to “one embodi-
ment” or “an embodiment™ (or the like) means that a particu-
lar feature, structure, or characteristic described in connec-
tion with the embodiment is included in at least one
embodiment of the invention. Thus, appearances of the
phrases “in one embodiment” or “in an embodiment” or the
like in various places throughout this specification are not
necessarily all referring to the same embodiment.

Furthermore, the described features, structures, or charac-
teristics may be combined in any suitable manner in at least
one embodiment. In the following description, numerous spe-
cific details are described to give a thorough understanding of
embodiments of the invention. One skilled in the relevant art
may well recognize, however, that embodiments of the inven-
tion can be practiced without at least one of the specific details
thereof, or can be practiced with other methods, components,
materials, et cetera. In other instances, well-known struc-
tures, materials, or operations are not shown or described in
detail to avoid obscuring aspects of the invention. This dis-
closure will now begin with a general description of embodi-
ments and then turn to specific non-limiting examples of
embodiments with reference to the drawings herein.



US 9,218,197 B2

3

A typical data center may contain applications that are
installed on virtual machines (VM) or installed on physical
servers. Virtual machines are a software implementation of a
computing environment in which an operating system or
application can be installed and run. One way to migrate from
virtual or physical servers into a cloud computing environ-
ment is to migrate physical servers into the VM and then
migrate the VM into the cloud environment. Another way to
accomplish the migration is to create a new VM in the cloud
environment and then try to reinstall applications into that
new VM. Embodiments provide that either method will
require adjustments after the installation to the cloud envi-
ronment.

Conventionally, migration from one computing environ-
ment to another is accomplished using a six step approach.
That process is as follows:

(1) Discovery—for each application, discover the compo-
nents and their dependencies. For each virtual machine
(VM), discover all software installed;

(2) Analysis—plan a target configuration for each applica-
tion;

(3) Migration—migrate the applications to the target envi-
ronment (using application reinstall or migrating VM
images to the target environment);

(4) Adjustment—for all target VMs, adjust them to operate
in the target environment;

(5) Reconfigure—reconfigure the applications to run in the
target environment; and

(6) Test and Cutoff; continue testing applications until
satisfied with operability.

The process of migration from a source environment to a
target environment is time-consuming with many manual
steps. Embodiments provide that it is possible to automate
steps in the process that work at the operating system level,
but thus far application-dependent steps for migration have
been manual or driven by ad hoc scripts.

Embodiments provide that migration is a change in the
environment parameters. Embodiments provide that during
the process of migration, the following environment param-
eters may change: IP addresses, MAC addresses, Hostnames,
Port numbers, and Authentication credentials such as private
keys and Kerberos tokens, as examples. Embodiments pro-
vide that standard tools such as connectivity tools (e.g. SSH
[Secure Shell internet protocol] versus “RDP” [“Remote
Desktop” protocol from Microsoft Corporation of Redmond,
Wash., as non-limiting examples) and system management
tools (e.g. “ITM” [“IBM Tivoli Management™ from Interna-
tional Business Machines Corporation {IBM} of Armonk,
N.Y.] versus “Altiris” [from Symantec Corporation of Moun-
tain View, Calif.] and “TSM” [IBM’s “Tivoli Storage Man-
ager”] versus “Veritas Replicator” [from Symantec Corpora-
tion], as non-limiting examples), used by the applications
may also change during migration (e.g. SSH changes to
“RDP”, “ITM” replaces “Altiris”). Moreover, embodiments
provide that environment standards such as patching stan-
dards and security/compliance standards, as non-limiting
examples, may also change during migration. Embodiments
provide that none of these changing parameters are applica-
tion specific, but the way they are referenced in proprietary
configuration files and mechanisms is specific to each appli-
cation.

Embodiments provide that the Discovery process (as
described in the 6-Step process above) may be replaced with
a process that identifies required parameters that will need to
be changed in order for an application to function properly
after the migration (referred to hereinafter as “points of vari-
ability” or “PoVs” interchangeably). Moreover, embodi-

5

10

15

20

25

30

35

40

45

50

55

60

65

4

ments describe that a PoV may be used to identify related
applications such that if a first VM refers to the IP address of
a second VM, they are identified as related and if the IP
address of second VM changes during migration, the same
address change will be necessary in the first VM to make the
related application function. Embodiments further provide
that the new PoVs for a given VM are automatically deter-
mined by understanding which VM in the environment the
PoV belongs to and automatically replacing its new value.
Embodiment describe that accurately identifying PoVs is
challenging. Values of PoVs may be similar to any other
variable or string, for example, host names or port numbers.
Moreover, embodiments provide that configuration files con-
tain many inter-dependent PoVs as described below in detail.

Embodiments provide that configuration files may contain
PoVs that are dependent on other PoVs. For example, con-
figuration files may contain a port number that depends on a
hostname/IP address, a username may depend on a password,
or authentication tokens may be present that depend on a
hostname/IP address. Embodiments provide that to re-con-
figure these PoVs, a context determination of the dependent
PoV with respect to the parent PoV is needed. Embodiments
provide that once the context is determined, the dependent
PoV is configured accordingly. Embodiments provide that
PoV dependency may be mined using an information
retrieval technique further provided below.

In one non-limiting example embodiment, the following
steps are illustrated. A Reader mounts a source image. A
Classifier selects all files in the image that can contain a point
of variability (PoV). Given a set of files and a set of PoVs, a
Finder will identity all locations on the files containing the
PoVs. Dependent PoVs are identified by forming and mining
rules that define their contextual relationship. A PoV indexer
captures in each image’s metadata, the PoV and associated
details that can be used to recreate a working application in
any new target environment. A deployer takes a set of virtual
machine images and their PoV metadata, as well as a target
environment’s specification, and deploys the application into
the target environment by updating all the PoVs.

The description now turns to the figures. The illustrated
embodiments of the invention will be best understood by
reference to the figures. The following description is intended
only by way of example and simply illustrates certain selected
exemplary embodiments of the invention as claimed herein.

It should be noted that the flowchart and block diagrams in
the figures illustrate the architecture, functionality, and opera-
tion of possible implementations of systems, apparatuses,
methods and computer program products according to vari-
ous embodiments of the invention. In this regard, each block
in the flowchart or block diagrams may represent a module,
segment, or portion of code, which comprises at least one
executable instruction for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

Specific reference will now be made herebelow to FIGS.
1-2. It should be appreciated that the processes, arrangements
and products broadly illustrated therein can be carried out on,



US 9,218,197 B2

5

or in accordance with, essentially any suitable computer sys-
tem or set of computer systems, which may, by way of an
illustrative and non-restrictive example, include a system or
server such as that indicated at 12' in FIG. 4. In accordance
with an example embodiment, most if not all of the process
steps, components and outputs discussed with respect to
FIGS.1-2 can be performed or utilized by way of'a processing
unit or units and system memory such as those indicated,
respectively, at 16' and 28' in FIG. 4, whether on a server
computer, a client computer, a node computer in a distributed
network, or any combination thereof.

To facilitate easier reference, in advancing from FIG. 1 to
and through FIG. 2, a reference numeral is advanced by a
multiple of 100 in indicating a substantially similar or analo-
gous component or element with respect to at least one com-
ponent or element found in FIG. 1.

Referring now to FIG. 1, a flow chart of an example
embodiment is illustrated. For this non-limiting example, it is
assumed that all the relevant images are stored in a central
location in the image store (101) and these images may be
accessed over a network. At 102, the reader is able to access
and search the mounted image from the image store. Using
the information obtained from reader, the classifier (103)
(referred to herethroughout as both “classifier” and “file clas-
sifier” interchangeably) identifies, selects and creates a list of
files in the image that contain parameters that will need to be
changed in order for an application to function properly after
the migration, (referred to hereinafter as “points of variabil-
ity” or “PoVs” interchangeably). Files that are candidates for
containing PoVs are passed on to the PoV miner at 104. The
PoV miner 104 receives all the files that are candidates for
containing PoVs and takes the input as a set of PoVs that
should be located in those files. The PoV miner 104 may
receive from a discovery module (not shown here) all the
values of the variables in the files in the image that will need
to change (PoVs) due to the migration.

In accordance with at least one embodiment of the inven-
tion, PoV miner 104 will actually identify all the locations in
the given set of files that contain the aforementioned PoVs.
Embodiments also provide that the PoV miner 104 will search
for and identify interdependent PoVs in multiple configura-
tion files and will store that information for later use so that
when changes are made to PoVs, they have the appropriate
effects on the related and/or interdependent applications and
not the other applications being migrated. As such, the PoV
miner 104 returns a list of the locations of each PoV. In one
non-limiting example of identifying PoVs, if a first file has
multiple IP addresses and related port numbers, then the PoV
miner 104 will associate the port numbers with the correct
respective IP addresses.

In accordance with at least one embodiment of the inven-
tion, a PoV indexer 105 (referred throughout the specification
as both “PoV indexer” or “indexer” interchangeably) receives
the aforementioned list and captures it with the metadata for
each of the identified PoVs. The metadata can then later be
used to adjust PoVs during subsequent migrations, thus elimi-
nating the need for repeating the whole process leading up to
another migration. It will be appreciated that a migration
between any two environments may be accomplished, includ-
ing, for example, a migration between one cloud environment
and another cloud environment.

In accordance with at least one embodiment of the inven-
tion, a deployer 106 receives the image from the PoV indexer
and the list of PoVs (now embedded with the metadata
obtained by the PoV miner) and, using the new set of replace-
ment values for the PoVs obtained from an analysis step,
deploys the VMs in the target environment (e.g., a VM1 and

20

30

35

40

45

50

6

VM2 as indicated at 107 and 108, respectively) and modifies
the values of the PoV’s so that the application can function in
the target environment.

Referring now to FIG. 2, a block diagram of a non-limiting
example, in accordance with at least one embodiment of the
invention, is illustrated. As shown, a PoV table (200) is con-
nected to a PoV miner (204). The PoV table (200) provides a
list of the PoV's that may be searched for and changed so that
the VMs will function in the new target environment. A source
environment (201), containing a number N of VM images, is
connected to an image mount utility (209). The image mount
utility (209) is in communication with a file system manager
(202). The image mount utility (209) may comprise a reader
which may request and receive each VM image one at a time,
mounts the VM image through the file system manager (202)
and then exposes the files in that image. The file system
manager is in communication with a file classifier (203) and
aPoV miner (204). The file classifier (203 ) and the PoV miner
(204) are also in communication with one another.

In the present non-limiting example, in accordance with at
least one embodiment of the invention, the file classifier (203)
attempts to classify exposed files using various suitable heu-
ristics to identify the files containing the PoVs. For instance,
only the files that contain some occurrence of a PoV, as
determined by a naive search method, may be selected for
further analysis by the PoV miner (204), or the files that are
classified as log files based on the occurrence of string ‘log’ in
the filename or filepath may be rejected directly. This classi-
fication process reduces the number of files (and thus the
search space) for searching for PoVs. The reduced set of files
is then sent to the PoV miner (204). The PoV miner (204) then
further searches for the location of the PoVs in each of the
files it receives from the file classifier (203). The PoV miner
(204) thus further reduces the total number of files to be
changed which would subsequently allow the VM to function
in the new target environment.

In accordance with at least one embodiment of the inven-
tion, the PoV miner (204) is in communication with an image
manipulator (211). The image manipulator (211) comprises
an indexer 205 and a deployer 206, both of which may func-
tion similarly to those described and illustrated with respect
to FIG. 1 (at 105 and 106, respectively). As such, the indexer
205 receives a list of PoV's created and identified by the PoV
miner, and captures that list along with the metadata for the
PoVs. This information is then passed along by the image
manipulator (211). More particularly, the deployer 206 takes
the image and list of PoVs embedded in the image by the PoV
indexer 205, combines that information with the new set of
values that might be obtained during analysis and combines
the information allowing the replacement values for the PoVs
to be substituted and modifying the image where necessary.
Finally, the image manipulator uploads the modified VM
Images 213 to a target environment.

In accordance with at least one embodiment of the inven-
tion, a PoV miner (e.g., as indicated at 204 in FIG. 2 and/or at
104 in FIG. 1) may function as follows. For each PoV value,
such as a hostname or an IP address or a username, the PoV
miner traverses an AST (abstract syntax tree representation)
of a file of an image to identify and verify a location of the
PoV value in the file by annotating nodes in the AST. Each
node in the AST represents some text in the respective con-
figuration file. The annotations help in verifying whether the
identified node is a hostname or an IP address or a username.
The nodes in the AST are annotated using value-based rules,
structure-based rules, relationship-based rules or any combi-
nation thereof. Each rule establishes directed connection
between annotations of nodes in the AST and has an associ-



US 9,218,197 B2

7

ated probability. A confidence in an annotation of a node is
calculated by composing the probabilities associated with
respective rules that resulted in the annotation and performing
a graph-based traversal of the connections between annota-
tions of nodes. The confidence in an annotation of a node may
be “intrinsic” as determined by value-based or structure-
based rules or any combination thereof, or the confidence
may be “relationship-based” as determined by relationship-
based rules that identify the context of a dependent PoV value
with respect to its associated parent PoV value as described
below.

In accordance with at least one embodiment of the inven-
tion, a PoV miner (e.g., as indicated at 204 in FIG. 2 and/or at
104 in FIG. 1) comprises a “PoV relationship miner” which
may function as follows, using relationship-based rules. For
each dependent PoV value, such as a port number, and its
associated parent PoV value, such as a hostname, the PoV
miner module establishes the relationship between annota-
tions of two respective nodes N1 and N2 in an AST of a file
when the following conditions are satisfied. Assume without
loss of generality that the value of N1 corresponds to the
dependent PoV where N1 has been annotated appropriately,
and the value of N2 corresponds to the parent PoV where N2
has also been annotated appropriately. Then, the PoV rela-
tionship miner uses relationship-based rules to identify the
relationship between the respective annotations of N1 and N2
and associate a confidence with this relationship which is
calculated using the “distance” between nodes N1 and N2 in
the AST. The “distance” may be calculated using the graph-
distance between nodes N1 and N2 in the AST, other mea-
sures of distance such as distance between key strings asso-
ciated with the values in nodes N1 and N2, or any
combination thereof. At the end of AST traversal, the loca-
tions of PoV values and relationship between dependent
PoVs and parent PoVs are confirmed using “intrinsic” and
“relationship-based” confidence values associated with anno-
tations either automatically or under human supervision or
any combination thereof.

It will be appreciated by those skilled in the relevant art that
embodiments provided may be applied for discovering per-
formance parameters for a given application or computing
environment. Other uses will be apparent to those skilled in
the art and embodiments contemplate all of these.

FIG. 3 sets forth a process more generally for image migra-
tion, in accordance with at least one embodiment ofthe inven-
tion. It should be appreciated that a process such as that
broadly illustrated in FIG. 3 can be carried out on essentially
any suitable computer system or set of computer systems,
which may, by way of an illustrative and non-restrictive
example, include a system such as that indicated at 12' in FIG.
4. In accordance with an example embodiment, most if not all
of the process steps discussed with respect to FIG. 3 can be
performed by way of a processing unit or units and system
memory such as those indicated, respectively, at 16' and 28' in
FIG. 4.

As shown in FIG. 3, in accordance with at least one
embodiment of the invention, there are received, at an image
reader, files of at least one image of at least one virtual
machine from a first environment (315). Points of variability
are identified within the files, with respect to preparation for
functioning in a second environment (317). Each point of
variability is associated with corresponding metadata (319),
and each point of variability is stored with its corresponding
metadata (321). The at least one image is reconfigured to
function in the second environment, such reconfiguring com-

10

15

20

25

30

35

40

45

50

55

60

65

8
prising adjusting the points of variability via using the meta-
data (323). The reconfigured image is deployed to the second
environment (325).

Referring now to FIG. 4, a schematic of an example of a
cloud computing node is shown. Cloud computing node 10' is
only one example of a suitable cloud computing node and is
not intended to suggest any limitation as to the scope ofuse or
functionality of embodiments of the invention provided
herein. Regardless, cloud computing node 10" is capable of
being implemented and/or performing any of the functional-
ity set forth hereinabove. In accordance with embodiments of
the invention, computing node 10' may not necessarily even
be part of a cloud network but instead could be part of another
type of distributed or other network, or could represent a
stand-alone node. For the purposes of discussion and illustra-
tion, however, node 10' is variously referred to herein as a
“cloud computing node”.

In cloud computing node 10' there is a computer system/
server 12', which is operational with numerous other general
purpose or special purpose computing system environments
or configurations. Examples of well-known computing sys-
tems, environments, and/or configurations that may be suit-
able for use with computer system/server 12' include, but are
not limited to, personal computer systems, server computer
systems, thin clients, thick clients, hand-held or laptop
devices, multiprocessor systems, microprocessor-based sys-
tems, set top boxes, programmable consumer electronics,
network PCs, minicomputer systems, mainframe computer
systems, and distributed cloud computing environments that
include any of the above systems or devices, and the like.

Computer system/server 12' may be provided in the gen-
eral context of computer system-executable instructions,
such as program modules, being executed by a computer
system. Generally, program modules may include routines,
programs, objects, components, logic, data structures, and so
on that perform particular tasks or implement particular
abstract data types. Computer system/server 12' may be prac-
ticed in distributed cloud computing environments where
tasks are performed by remote processing devices that are
linked through a communications network. In a distributed
cloud computing environment, program modules may be
located in both local and remote computer system storage
media including memory storage devices.

As shown in FIG. 4, computer system/server 12' in cloud
computing node 10 is shown in the form of a general-purpose
computing device. The components of computer system/
server 12' may include, but are not limited to, at least one
processor or processing unit 16, a system memory 28', and a
bus 18' that couples various system components including
system memory 28' to processor 16'.

Bus 18' represents at least one of any of several types of bus
structures, including a memory bus or memory controller, a
peripheral bus, an accelerated graphics port, and a processor
orlocal bus using any of a variety of bus architectures. By way
of example, and not limitation, such architectures include
Industry Standard Architecture (ISA) bus, Micro Channel
Architecture (MCA) bus, Enhanced ISA (EISA) bus, Video
Electronics Standards Association (VESA) local bus, and
Peripheral Component Interconnects (PCI) bus.

Computer system/server 12' typically includes a variety of
computer system readable media. Such media may be any
available media that are accessible by computer system/
server 12', and include both volatile and non-volatile media,
removable and non-removable media.

System memory 28' can include computer system readable
media in the form of volatile memory, such as random access
memory (RAM) 30' and/or cache memory 32'. Computer



US 9,218,197 B2

9

system/server 12' may further include other removable/non-
removable, volatile/non-volatile computer system storage
media. By way of example only, storage system 34' can be
provided for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a“hard drive”). Although not shown, a magnetic disk drive for
reading from and writing to a removable, non-volatile mag-
netic disk (e.g., a “floppy disk™), and an optical disk drive for
reading from or writing to a removable, non-volatile optical
disk such as a CD-ROM, DVD-ROM or other optical media
can be provided. In such instances, each can be connected to
bus 18' by at least one data media interface. As will be further
depicted and described below, memory 28' may include at
least one program product having a set (e.g., at least one) of
program modules that are configured to carry out the func-
tions of embodiments of the invention.

Program/utility 40', having a set (at least one) of program
modules 42', may be stored in memory 28' (by way of
example, and not limitation), as well as an operating system,
at least one application program, other program modules, and
program data. Each of the operating systems, at least one
application program, other program modules, and program
data or some combination thereof, may include an implemen-
tation of a networking environment. Program modules 42
generally carry out the functions and/or methodologies of
embodiments of the invention as described herein.

Computer system/server 12' may also communicate with at
least one external device 14' such as a keyboard, a pointing
device, a display 24, etc.; at least one device that enables a
user to interact with computer system/server 12; and/or any
devices (e.g., network card, modem, etc.) that enable com-
puter system/server 12' to communicate with at least one
other computing device. Such communication can occur via
1/0 interfaces 22'. Still yet, computer system/server 12' can
communicate with at least one network such as a local area
network (LAN), a general wide area network (WAN), and/or
a public network (e.g., the Internet) via network adapter 20'.
As depicted, network adapter 20' communicates with the
other components of computer system/server 12' via bus 18'.
It should be understood that although not shown, other hard-
ware and/or software components could be used in conjunc-
tion with computer system/server 12'. Examples include, but
are not limited to: microcode, device drivers, redundant pro-
cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

It should be noted that aspects of the invention may be
embodied as a system, method or computer program product.
Accordingly, aspects of the invention may take the form of an
entirely hardware embodiment, an entirely software embodi-
ment (including firmware, resident software, micro-code,
etc.) or an embodiment combining software and hardware
aspects that may all generally be referred to herein as a “cir-
cuit,” “module” or “system.” Furthermore, aspects of the
invention may take the form of a computer program product
embodied in at least one computer readable medium having
computer readable program code embodied thereon.

Any combination of one or more computer readable media
may be utilized. The computer readable medium may be a
computer readable signal medium or a computer readable
storage medium. A computer readable storage medium may
be, for example, but not limited to, an electronic, magnetic,
optical, electromagnetic, infrared, or semiconductor system,
apparatus, or device, or any suitable combination of the fore-
going. More specific examples (a non-exhaustive list) of the
computer readable storage medium would include the follow-
ing: an electrical connection having at least one wire, a por-
table computer diskette, a hard disk, a random access memory

30

40

45

10

(RAM), a read-only memory (ROM), an erasable program-
mable read-only memory (EPROM or Flash memory), an
optical fiber, a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store, a program for
use by, or in connection with, an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wire line, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the invention may be written in any combination of
at least one programming language, including an object ori-
ented programming language such as Java®, Smalltalk, C++
or the like and conventional procedural programming lan-
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user’s computer (device), partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer, or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the invention are provided herein with reference
to flowchart illustrations and/or block diagrams of methods,
apparatus (systems) and computer program products. It will
be understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture. Such an article of manufacture can include
instructions which implement the function/act specified in the
flowchart and/or block diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-



US 9,218,197 B2

11

tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

This disclosure has been presented for purposes of illus-
tration and description but is not intended to be exhaustive or
limiting. Many modifications and variations will be apparent
to those of ordinary skill in the art. The embodiments were
chosen and provided in order to explain principles and prac-
tical application, and to enable others of ordinary skill in the
art to understand the disclosure.

Although illustrative embodiments of the invention have
been provided herein with reference to the accompanying
drawings, it is to be understood that the embodiments of the
invention are not limited to those precise embodiments, and
that various other changes and modifications may be affected
therein by one skilled in the art without departing from the
scope or spirit of the disclosure.

What is claimed is:

1. A method of virtual machine image migration, said
method comprising the steps of:

utilizing a processor to execute computer code configured

to perform the steps of:

receiving, at an image reader, files of at least one image of

at least one virtual machine from a first environment;
identifying points of variability within the files, with
respect to preparation for functioning in a second envi-
ronment, wherein the points of variability comprise ele-
ments which change during virtual machine migration;
associating each point of variability with corresponding
metadata;

storing each point of variability with its corresponding

metadata;

reconfiguring the at least one image to function in the

second environment, said reconfiguring comprising
adjusting the points of variability via using the metadata;
and

deploying the reconfigured image to the second environ-

ment.

2. The method according to claim 1, wherein the second
environment comprises a target virtual machine environment.

3. The method of claim 1, wherein:

the at least one virtual machine from a first environment

comprises a first virtual machine and a second virtual
machine; and

said method comprises classifying the first and second

virtual machines as related virtual machines in response
to discovering at least one identical point of variability
between the first and second virtual machines.

4. The method according to claim 3, wherein said adjusting
comprises adjusting the at least one identical point of vari-
ability to an identical value among the first and second virtual
machines.

5. The method according to claim 1, wherein said identi-
fying comprises classifying the files based on a capability to
include a point of variability.

6. The method according to claim 1, wherein said storing
comprises indexing the metadata.

7. The method according to claim 1, wherein the points of
variability comprise at least one member selected from the
group consisting of: at least one environment parameter; at
least one standard tool; and at least one standard.

8. The method according to claim 1, wherein said identi-
fying comprises:

identifying at least one point of variability which is depen-

dent on at least one other point of variability; and

5

15

20

25

30

35

40

45

50

55

60

65

12

determining a context of dependency between the at least
one point of variability and the at least one other point of
variability.

9. The method according to claim 8, wherein said identi-
fying of at least one point of variability comprises identifying
points of variability based on rules that associate an annota-
tion with a text in a file in an image.

10. The method according to claim 9, wherein the rules
comprise at least one of: value-based rules; structure-based
rules; relationship-based rules; and hybrid rules.

11. The method according to claim 9, wherein:

each rule includes an associated probability; and

said method comprises performing graph-based traversal
for calculating confidence in an annotation using a com-
position of two or more rules, wherein confidence asso-
ciated with an annotation is at least one of: intrinsic; and
relationship-based.

12. An apparatus for virtual machine image migration, said

apparatus comprising:

at least one processor; and

a computer readable storage medium having computer
readable program code embodied therewith and execut-
able by the at least one processor, the computer readable
program code comprising:

computer readable program code configured to receive
files of at least one image of at least one virtual machine
from a first environment;

computer readable program code configured to identify
points of variability within the files, with respect to
preparation for functioning in a second environment
wherein the points of variability comprise elements
which change during virtual machine migration;

computer readable program code configured to associate
each point of variability with corresponding metadata;

computer readable program code configured to store each
point of variability with its corresponding metadata;

computer readable program code configured to reconfigure
the at least one image to function in a second environ-
ment, the reconfiguring including adjusting the points of
variability via using the metadata; and

computer readable program code configured to deploy the
reconfigured image to the second environment.

13. A computer program product for virtual machine image

migration, said computer program product comprising:

a computer readable storage medium having computer
readable program code embodied therewith, the com-
puter readable program code comprising:

computer readable program code configured to receive
files of at least one image of at least one virtual machine
from a first environment;

computer readable program code configured to identify
points of variability within the files, with respect to
preparation for functioning in a second environment
wherein the points of variability comprise elements
which change during virtual machine migration;

computer readable program code configured to associate
each point of variability with corresponding metadata;

computer readable program code configured to store each
point of variability with its corresponding metadata;

computer readable program code configured to reconfigure
the at least one image to function in a second environ-
ment, the reconfiguring including adjusting the points of
variability via using the metadata; and

computer readable program code configured to deploy the
reconfigured image to the second environment.



US 9,218,197 B2

13

14. The computer program product according to claim 13,
wherein the second environment comprises a target virtual
machine environment.

15. The computer program product of claim 13, wherein:

the at least one virtual machine from a first environment

comprises a first virtual machine and a second virtual
machine; and

said computer readable program code is configured to clas-

sify the first and second virtual machines as related
virtual machines in response to discovering at least one
identical point of variability between the first and second
virtual machines.

16. The computer program product according to claim 13,
wherein said computer readable program code is configured

10

to classify the files based on a capability to include a point of 15

variability.

17. The computer program product according to claim 13,
wherein said computer readable program code is configured
to index the metadata.

14

18. A method comprising:

receiving files of at least one image of at least one virtual
machine from a first environment;

identifying points of variability within the files, with
respect to preparation for functioning in a second envi-
ronment, wherein the points of variability comprise ele-
ments which change during virtual machine migration;

associating each point of variability with corresponding
metadata;

storing each point of variability with its corresponding
metadata;

reconfiguring the at least one image to function in the
second environment, said reconfiguring comprising
adjusting the points of variability via using the metadata;
and

subsequently employing the metadata again in migrating
the at least one image to a third environment.

#* #* #* #* #*



